but so too is the argument that the resonance energies of such non-coplanar compounds must be small and their stabilities due solely to steric factors.

This point will be discussed in more detail elsewhere.
Notre Dame, Indlana

〔CONTRIBUTION FRUM TME UNIVERSITY OF NOTRE DAME

A Molecular Orbital Theory of Organic Chemistry. III. ${ }^{1,2}$ Charge Displacements and Electromeric Substituents

By M. J. S. Dewar*
Recenved September 13, 19,51

Abstract

The methods of the preceding papers ${ }^{1,2}$ are used to analyze the displace ments of charge in an AH when one or more carbon atons are replaced by heteroatoms, or when electromeric substituents are introduced. The effects of heteroatoms had been considered previously by Coulson and Longuet-Higgins, ${ }^{4,5}$ but here they will be studied by an alternative and more accurate nicthod. Conditions are found for two electromeric substituents to conjugate with one another through an intermediate mesomeric system. The results of this treatment agree qualitatively with those of current theory, but the possibility now appears of estimating various effects semi-quantitatively within the limitations ${ }^{1}$ of the present methods.

The next step in the program is to analyze the nature, causes and effects of charge displacements in conjugated systems due to the presence of heteroatoms and electromeric substituents. Considerable progress has been made already in the analysis of changes in an AH caused by replacing one or more carbon atoms by heteroatoms, by Coulson and Longuet-Higgins ${ }^{4}$ and by Longuet-Higgins. ${ }^{5}$ In particular they were able to derive the classical "law of alternating polarity" for such systems. Here the same general problem is considered to a higher approximation by using the new relations given in Parts I^{1} and II. ${ }^{2}$ It will also prove possible to discuss the effects of electromeric substituents which lay outside the scope of the previous treatment. These two topics are discussed in theorems :34-39 and 40-45, respectively. Theorem 37 is due to Longuet-Higgins.:

In theorems $46-49$ the ability of two groups to conjugate with each other ("mutual conjugation") through an intermediate mesomeric system is consiclered, and as a resalt rules (theorems $30-.53$) are found for describing the relative activities of electromeric substituents seni-quantitatively (this problem will be discussed further in Part VI_{1}.

Qualitatively, the present treatment will be found to give conclusions similar to those reached by current theory.

Theorem 34. The main effect of an increase in clectron afluity of an unstarred atom in an even $A H$ is to decrease the charge densities at all starred atoms. Let the AH be RS, derived from an odd AH R and an atom S of coulomb term α. If $|\alpha|$ is small, there will be a zeroth order perturbation of the AO ψ of S and the NTBMO Φ_{n} of R. This effect will be larger than any elue to higher pertarlasions; and so is first approximation to the change in charge density with α wity be found fron 2 consideration of the correponding change in the pair of MO's arising from ψ and Φ_{n}.

The secula equation for the perturbed energies is

$$
\begin{equation*}
{ }_{a, \mathrm{~m}}^{u^{\prime} a_{\mathrm{w}} \beta}=\alpha=w^{2}-\alpha w-a_{\mathrm{ur}}^{*} \beta^{2}=0 \tag{1}
\end{equation*}
$$

[^0]with the solutions
\[

$$
\begin{equation*}
W=\frac{1}{2}\left(\alpha \pm\left(\alpha^{2}+4 a_{o r}^{a} \beta^{2}\right)^{1 / 2}\right) \tag{2}
\end{equation*}
$$

\]

Of these the lower level alone will be occupied in RS. The cocfficients b_{s} of ψ, b_{0} of Φ_{0}, in this MO are given by

$$
\begin{align*}
& b_{0}=\frac{2 a_{\mathrm{or}} \beta}{\left[2 \alpha^{2}+8 a_{\mathrm{or}}^{2} \beta^{2}+2 \alpha\left(\alpha^{2}+4 a_{\mathrm{or}}^{2} \beta^{2}\right)^{1 / 2}\right]^{1 / 2}} \\
& b_{s}=\frac{\left(\alpha^{2}+4 a_{\mathrm{or}}^{3} \beta^{2}\right)^{1 / 2}-\alpha}{\left[2 \alpha^{2}+8 a_{\mathrm{or}}^{2} \beta^{2}-2 \alpha\left(\alpha^{2}+4 a_{\mathrm{or}}^{2} \beta^{2}\right)^{1 / 2}\right]^{1 / 2}} \tag{3}
\end{align*}
$$

The XBMO Φ_{0} covers only starred atoms in R , i.e., atons, in RS of opposite parity to S. Hence the perturbation leaves the charge densities of unstarred atoms in RS unchanged to a first approximation

If atom t is a starred atom in RS, the coefficient of ϕ_{t} in the NBMO being $a_{0 t}$, then the coefficient of ϕ_{t} in the perturbed MO is given approximately by

$$
\begin{equation*}
a_{\mathrm{ot}} b_{o}=\frac{2 a_{\mathrm{or}}^{\mathrm{a}} a_{\mathrm{ot}} \beta}{\left[2 \alpha^{2}+8 a_{\mathrm{or}}^{2} \beta^{2}-2 \alpha\left(\alpha^{2}+4 a_{\mathrm{or}}^{2} \beta^{2}\right)^{1 / 2}\right]^{1 / 9}} \tag{4}
\end{equation*}
$$

The corresponding charge density at t due to occupation of this MO by two electrons in RS, is then

$$
\begin{align*}
& q(m)=3 \alpha^{2}+8 a_{o r}^{2} \beta^{2} \frac{8 a_{o r}^{2} a_{o t}^{\frac{2}{0} \beta^{2}}}{-2 \alpha\left(\alpha^{2}+4 a_{o r}^{\frac{2}{2}} \beta^{2}\right)^{1 / 2}} \\
& \left.\simeq a_{i, n} ; 1+\frac{\alpha}{2 a_{\text {or }} \beta}\right\} \tag{5}
\end{align*}
$$

if α is sntall. Hence $q_{\text {ot }}$ decreases as α decreases, which proves the theorem, since a decrease in α inplies an increase in the electron affinity of S .

Theorem ,35. If in the even $A H R S$, atom S is attached to atom r in R, the mutual polarizability of atoms S, t is given approximately by $a_{\mathrm{at}}^{2} / 2 a_{\mathrm{or}}$. This result follows at once from equation (5) and the definition ${ }^{4}$ of mutual polarizability

$$
\begin{equation*}
\pi_{\bar{B}, \iota}=\pi_{t, \mathrm{i}}=\partial q_{\mathrm{t}}^{\prime} \partial \alpha_{\mathrm{s}} \simeq a_{\mathrm{ot} / 2}^{\mathrm{o}} / 2 a_{\mathrm{or}} \beta \tag{6}
\end{equation*}
$$

Theoren 36. Increasing the elcctron affinity of a starrad atom in an odd AII lowers the charge densitics at all other positions by compurable amounts. Let the odd AH be RS, derived from an even $A H R$ and the aton S of coulonb term α (α small). Fron equations (38) and (40) of Part I ${ }^{1}$, the charge density at aton t is given by
$q_{\mathrm{t}}=\sum_{m}^{\mathrm{occ}} 2 a_{\mathrm{mt}}^{2}\left(1-\frac{a_{\mathrm{mr}}^{2} \beta^{2}}{\left(E_{m}-\alpha\right)^{2}}\right)+n_{\mathrm{s}} \sum_{m}^{\mathrm{all}} \frac{a_{\mathrm{mr}}^{2} a_{\mathrm{mt}}^{2} \beta^{2}}{\left(E_{m}-\alpha\right)^{2}}$
where n_{n} is the number of electrons in the NBMO of RS. Now since R is an AH , the levels E_{m} occur in pairs, $\pm E_{\mathrm{m}_{1}}$, with the same values for the squared coefficients $a_{m r}{ }^{2}, a_{m i}{ }^{2}$. Hence if α is small, the last term in (7) will be approxinnately. constant. 'Therefore

$$
\begin{equation*}
4-\text { constant } \simeq-\sum^{\mathrm{oce}} \frac{2 a_{\mathrm{m}}^{2} a_{\mathrm{mr}}^{2} \beta^{2}}{\left(E_{m}-\alpha\right)^{2}} \tag{8}
\end{equation*}
$$

and since $E_{m}<0$ for occupied MO's, q_{t} decreases with decreasing α, i.e., with increasing electron affinity of S. This proves the theorem.

Definitions of Substituents. An electromeric substituent is a substituent which can conjugate with a suitable adjacent mesomeric system. A simple nucleophilic electromeric ($-E$) substituent consists of an atom with a pair of unshared p (or potentially p) electrons; e.g., $\mathrm{HO}_{-}^{-}, \mathrm{O}^{-}, \mathrm{R}_{2} \mathrm{~N}^{-}$, $\mathrm{Cl}-$ A simple electrophilic electromeric $(+E)$ substituent contains the grouping $-\mathrm{X}=\mathrm{Y}$, or $-\mathrm{X} \equiv \mathrm{Y}$, where Y is a heteroatom and X may be carbon or another heteroatom;
e.g., $-\mathrm{CR}=\mathrm{O},-\mathrm{C} \equiv \mathrm{N}^{-},-\stackrel{+}{\mathrm{N}} \equiv \mathrm{N}$. Hydrocarbon radicals (e.g., vinyl, phenyl) are classed as $\pm E$ substituents.

Theorem 37. In an odd AH anion or cation the charge is confined to starred atoms, being given approximately by $a_{o \mathrm{or}^{2}}$. This important result, due to Longuet-Higgins, ${ }^{\text {s }}$ follows from theorems 6 and 8 of Part II. ${ }^{2}$

Theorem 38. $A-E$ substituent at an unstarred position in an even $A H$ raises the charge density at all starred positions and lowers that at all unstarred positions, the former effect predominating. If the $A H$ is R and the substituent S, RS is equivalent to an odd AH anion RS^{\prime}, in which the charge is confined to starred positions (theorem 37). Replacing S^{\prime} by S lowers the charge density at all positions in R (theorem 36). The latter effect is, however, only a small perturbation effect and therefore less than the former. Thus the substituent produces large negative charges at the starred positions in R, and smaller positive charges at the unstarred positions.
(This 'law of alternating polarity'' was first derived in a more qualitative form by Coulson and Longuet-Higgins. ${ }^{1}$).

Theorem 39. $A+E$ substituent at an unstarred position in an even. AH lowers the charge density at all positions, the effect being greater at starred positions. If the AH is R, the substituent S, then RS is derived from an even AH RS' by replacing an unstarred carbon by a heteroatom. Theorem 34 states that the main effect will be a decrease in charge density at the starred atoms in RS^{\prime}. However the inductive effect of the heteroatom will induce a positive charge on the adjacent starred carbon atom and so raise its electron affinity; this brings about a second order decrease in charge density at the unstarred atoms in RS.

Theorem 40. $A+E$ substituent at an active position stabilizes an odd AH anion more efficiently, and an odd $A H$ cation less efficiently, than it stabilizes a neutral $A H$ radical. Let the $\AA H$ be R , the substituent S , and the analogous $\pm E$ substituent be S^{\prime}. Then RS' is an odd AH, and the heteroatom of S occupies a starred position in it. Let the coefficient of the NBMO of RS there be $a_{\text {os }}$.

Then the resonance energies of $\left(\mathrm{RS}^{\prime}\right)^{+},\left(\mathrm{RS}^{\prime}\right)$ and (RS' $)^{-}$ are identical since the three compounds differ only in the number of electrons that occupy the NBMO. From theorem $2,{ }^{2}$ the resonance energies of the cation $(\mathrm{RS})^{+},\left(\mathrm{R}^{+}\right)$, of the radical (RS), (R^{\cdot}), and the anion (RS$)^{-},\left(\mathrm{R}^{-}\right)$, are related by

$$
\begin{align*}
& \mathrm{R}^{+}=\mathrm{R}^{\cdot}+a_{0 \mathrm{o}}^{\circ} \alpha \\
& \mathrm{R}^{-}=\mathrm{R}^{\cdot}-a_{0 \mathrm{~g} \alpha}^{2} \alpha \tag{9}
\end{align*}
$$

Since $\alpha<0$, the anion is stabilized more, and the cation less, than is the neutral radical.

Theorem 41. A $-E$ substituent at an active position stabilizes an odd $A H$ cation R^{+}much more efficiently, and an odd $A H$ anion R^{-}much less efficiently than it stabilizes the neutral odd $A H$ radical R. Let the odd AH be R and the substituent, of Coulonb ternn α, be S . Then the resonance energy of $R S$ (relative to $R+S$) is given ${ }^{1}$ by

$$
\begin{equation*}
R_{R S}=-2 \sum_{n \neq 0}^{\text {unocc }} \frac{a_{\mathrm{unr}}^{2} \beta^{2}}{\alpha-E_{m}}-\frac{(2-n) a_{u r}^{2} \beta^{2}}{\alpha} \tag{10}
\end{equation*}
$$

where n is the number of electrons in the NBMO of R ($n=$ 0 for $\mathrm{R}^{+}, n=1$ for $\mathrm{R}, n=2$ for R^{-}). The first sum in (10) is a second-order perturbation energy which will be close to that for the resonance energy of R'S, where R^{\prime} is an AH similar to R but even. The quantity $a_{\mathrm{or}^{2}} \beta^{2} / \alpha$ in the last term of (10) will be large. Hence if R is an anion (R^{-}), the resonance energy of RS will be close to that for RS'. But if R is a radical, the stabilization by the substituent will be much larger, and if R is a cation, larger still.

Theorem 42. $A+E$ substituent in an even $A H$, or at an inactive position in an odd $A H$, has about the same stabilizing effect as an analogous $\pm E$ substituont. This follows at once
from equations (9) since the charge densities at all positions in an even AH , or at inactive positions in an odd AH (ion or radical), are unit-

Theorem 43. If $R S$ is an even $A H$, formed by combination of an odd $A H R$ with an atom S, then the resonance energies of $R S$ relative to $(R+S)$ is the same (R_{0}) no matter whether R is an ian or radical. If, however, an active atom t in R is replaced by a heteroatom of coulomb term α, the relative resonance energies for the cases where R is an anion (R^{-}), a radical(R^{\cdot}) or a cation $\left(R^{+}\right)$are given appraximately by

$$
\begin{gather*}
\mathrm{R}^{\prime}=\mathrm{R}_{\mathrm{o}} \\
\mathrm{R}^{-}=\mathrm{R}_{0}+a_{\mathrm{t} \alpha}^{2} \alpha \\
\mathrm{R}^{+}=\mathrm{R}_{\mathrm{o}}-a_{\mathrm{t} \mathrm{t} \alpha}^{2} \tag{11}
\end{gather*}
$$

This result follows from theorems 2 and 9 of Part II, since the charge densities at atom t in the ions are ($1 \pm a_{0 \mathrm{t}}{ }^{2}$).

Theorem 44. The effect in theorem 43 of replacing carbon t by a heteroatom is similar to the effect of attaching $a+E$ atom substituent to atom t. This follows from equations (9) and (11), since from theorem 7 of Part II, ${ }^{2}$ the squared coefficients $a_{1,7^{2}}$ in (9) and $a_{0 t}{ }^{2}$ in (11) are similar.

Theorem $4 \overline{5}$. The specific stabilizing effect of $a-E$ substituent on an odd AH ion or radical is greater, the less the charge density at the point of attachment. This result follows at once from theorem 41 and equation (10). The relative effects of a $-E$ substituent on the stabilities of various odd AH ions can be calculated semi-quantitatively from equation (10); thus the stabilizing effect on an odd AH cation is proportional to $a_{o r}{ }^{2}$, to a first approximation.

Theorem 46. To a first approximation, the resonance energy $R_{\text {RST }}$ of $R S T$ relative to $(R+S+T)$ is the sum of the resonance energies of $R S$ relative to $(R+S)\left(R_{\mathrm{Rs}}\right)$, and of $S T$ relative to $(S+T)\left(R_{\mathbb{S}}\right)$, if R, S, T are neutral $A H ' s$ and at least two are even. Let R be attached to S through atom r in R to atom s in S ; and S to T through atom u in S to atom v in T ; and let the energy levels of $\mathrm{R}, \mathrm{S}, \mathrm{T}$ be E_{m}, F_{n}, G_{p}, respectively. Then from equation (41) of Part I, ${ }^{1}$

$$
\begin{align*}
& R_{1 \$ T}=-2\left\{\sum_{m}^{\text {occ unocc }} \sum_{n}^{\text {unooc }}-\sum_{n}^{\text {occ }} \sum_{n}\right\} \frac{a_{m r}^{2} b_{n s}^{2} \beta^{2}}{E_{m i}-F_{n}} \\
& -2\left\{\sum_{n}^{\text {occ unocc }} \sum_{\dot{p}}^{\text {unocc }}-\sum_{n}^{\text {occ }} \sum_{p}\right\} \frac{b_{11}^{2} c_{p v}^{2} \beta^{2}}{F_{n}-\mathrm{G}_{p}} \\
& =R_{\mathrm{RS}}+R_{\mathrm{ST}} \tag{12}
\end{align*}
$$

It is easily seen that this result is unaffected by degeneracy unless two of the groups R, S, T are odd.

Definitions.-Two groups R, T are said to conjugate $m u$ tually through a mesomeric system S if in the notation of theorent 46, $R_{\mathrm{RST}}>R_{\mathrm{RS}}+R_{\mathrm{ST}}$.
An odd alternant system is said to be cross conjugated if the active segment in it does not cover all the conjugated atoms.

Theorem 47. Two $+E$ substituents cannot conjugate mutually, nor can two - E substituents. The first part of the theorem can be proved in exactly the same way as theorem 46. The second part follows from the proof of theorem 44. which implies that if the $-E$ substituents are R, T and the intermediate AH S, then the resonance energies of RS relative to ($R+S$), and of RST relative to ($R+S T$) are similar.

Theorem 48. If R is an even alternant system and $S a-E$ group, the charge density at S in $R S$ is less, the greater the $R-S$ bond order and the greater the resonance energy of RS relative to $(R+S)$. This result follows at once as a first approximation fron the expressions for bond order, charge density and resonance energy (equations 33, 39, 40, 41 of Part I ${ }^{1}$). An example is provided by aromatic amines where the charge density at the amino group should be less, the more strongly it is conjugated with the ring.

Theorem 49. $A+E$ substituent R can conjugate mutually with a $-E$ substituent T if they are attached to atoms of unlike parity in an even $A H S$: provided that if the equivalent $A H$ $R^{\prime} S T$ is cross-conjugated, R^{\prime} is attached to the starred segment of $S T$. This result follows at once from theorems 43 and 44 ; the charge displacements in S brought about by conjugation with T lead to a first-order difference in conjugation energy between RST and RS

$$
\begin{equation*}
R_{1 \mathrm{RT}} \simeq R_{\mathrm{RS}}-a_{\mathrm{os} \alpha}^{2} \alpha \tag{13}
\end{equation*}
$$

where $u_{u s}$ is the coefficient of the NBMO of the odd AH

ST at the point, S , of attachnent of the $+E$ substituent R . If, however, RST is cross-conjugated so that a_{08} vanishes, so too does the mutual conjugation energy, M, which can be defined by

$$
\begin{equation*}
M=R_{\mathrm{RST}}-R_{\mathrm{RS}}-R_{\mathrm{ST}} \tag{14}
\end{equation*}
$$

Definitions.-The $+E$ astivity of a $+E$ snbstituent R is defined to be a measure of the difference in stability bctween RS ${ }^{-}$and $\mathrm{R}^{-} \mathrm{S}^{-}$, where S^{-}is an odd AH anion, R being attached at an active atom, and R^{\prime} is the $\pm E$ (hydrocarbon) group equivalent to R. Likewise the $-E$ activity of a group T is defined to be a measure of the difference in resonance energy between $\mathrm{R}^{+} \mathrm{T}, \mathrm{R}^{+}$being an odd AH cation, and $\mathrm{R}^{\prime} \mathrm{T}, \mathrm{R}^{\prime}$ being the corresponding neutral radical.
Theorem 50. The $+E$-activity of a simple $+E$ group is greater, the greater the electron affinity of the heteroatom in it; and the $-E$-activity of a simple $-E$ group is less, the greater the electron affinity of its heteroatom. The first part of the theorem follows from theorem 44 and equation (11). The second part follows from equation (10), since $E_{\mathrm{rl}}>0$ for unoccupied MO's.
Theorem 5l. The charge displacements in an even AII S due to a $+E$ substituent R, are greater, the greater the $+E$ activity of the substituent. This follows at once from thenrem 39 and equation (5); the greater $|\alpha|$, the greater the charge displacements.
Theorem.52. If S is an even $A H$, and $T a-E$ subsituent, the charge densities at the atoms of S in ST are less, the less the $-E$ activity of T. This follows at once from theorems 36 and 50 .

Theorem 53. The mutual conjugation energy of RST is greater, the greater the $+E$ activity of R or the $-E$ activity of T. From theorem 52, the charge density in ST at the point of attachment of R is greater, the greater the $-E$ activity of T; and the method of proof of theorem 49 shows that the mutual conjugation energy is proportional to this charge density, and also to the $+E$ activity of R.
Definitions.-The results on mutual conjugation energies suggest an extended definition of electromeric substituents; $a+E$ substituent is any group which can conjugate mutually with a simple - E substituent, and a - E substituent one which can conjugate mutually with a simple $+E$ substituent. From theorem 49 , it follows that a $+E$ substituent is a $\pm E$ substituent in which one or more atoms of opposite parity to that by which the substituent is attached to the rest of the molecule have been replaced by heteroatoms; while a $-E$ substituent is a substituent iso- π-electronic with an odd AH anion and attached through an active atom.
A neutralized system is defined as one in which a $+E$ and a -- E substituent conjugate mutually; or, more generally, a system iso- π-electronic with an odd AH anion in which there are two or more starred heteroatoms.

From the definitions of $+E,-E$ substituents and from theorems $41,44,49$, a measure of activity cant be defined. Thus if R is a $+E$ substituent, R^{\prime} the corresponding $\pm E$ substituent, and if the coefficients of the NBMO of the odd $\mathrm{AH} \mathrm{R}^{\prime} \mathrm{CH}_{2}$, at the positions of the heteroatoms r in R are $a_{\text {or }}$, then the relative $+E$ activity ϵ of the substituent is defined to be

$$
\begin{equation*}
\varepsilon=-\sum_{r} a_{o r}^{2} \alpha_{r} \tag{15}
\end{equation*}
$$

where α_{r} is the coulomb term of atom r in R. Likewise if T is a $-E$ substituent and T^{\prime} the equivalent orid AH anion, and if the NBMO coefficient of atom t in T^{\prime} is $b_{s t}$, the relative $-E$ activity v of T is defined by

$$
\begin{equation*}
\nu=\sum_{r} b_{o t}^{2} \alpha_{t} \tag{16}
\end{equation*}
$$

In each case the activity is relative to that of an equivalent $\pm E$ (hydrocarbon) substituent; and as usual in the present investigation, the results are limited to alternant systems.

Theorem 54. In the neutralized system $R S T, R$ is more negative than in $R S$ and T more positive than in $S T$. The mutual conjugation energy arises from the fact that R is more negative in RST than in RS, as has already been shown ($c f$. theorem 49). Also R is attached to an active atom in ST; the heteroatoms in R therefore occupy active positions in RST. Hence from theorem 36, the charge density at T in RST is less than in R'ST, R' being the hydrocarbon equivalent of R; and since the charge densities at T will be similar in R'ST and ST, the charge density at T in RST is less than in ST-i.e., in the former, T is more positive.

Theorem 5.5. The neutralized system RST behaves as n $+E$ substituent if attached to another molecule through an un starred atom in S, but as a $-E$ substituent if it is attached through a starred atom. An equivalent statement is that a $-E$ gronp can conjugate mintually with more than one suitably placed $+E$ group, and a $+E$ group with more than one suitably placed $-E$ group; and this can be proved by arguments exactly simbiar to that used in proving theorem 49.

Throrem in. The $+E$ activity of the ncutralized group RST is less than that of RS, and the -E activity of RST less than that of $S T$. Mutnal conjugation raises the charge density of R and lowers that of T in RST. The increased charge density at the heteroatoms of R lowers their electron affinity, and so lowers the $+E$ activity of the group; while the decreased charge density at the heteroatoms of T increases their electron affinity, and decreases the $-E$ activity of the group.

Theorem 5i'. The resonance mergy of an odd alternant anion $R S^{-}$relative to $\left(R+S^{-}\right)$, S^{5} being an atom, is less, the greater the electron affinity of S. Let R be an cven AH , S the atom of coulomb terni α. Then the resonance energy of RS relative to ($\mathrm{R}+\mathrm{S}^{-}$) is: given ${ }^{1}$ by

$$
\begin{equation*}
R_{1 B 3}=-2 \sum_{m}^{\mathrm{unocc}} \alpha-E_{m}^{2} \beta_{\mathrm{mr}}^{2} \beta^{2} \tag{17}
\end{equation*}
$$

Since $E_{m}>0$ for unoccupied orbitals, and $\alpha<0$ for the usua! hetcroatonss, $R_{\text {ris }}$ is less the more negative $\alpha-\cdots i$.e., the greater the electron affinity of S .

Discussion

The results of this section are best illustrated by example. Consider benzene(I) as an example of an even AH , and consider the effects of (a) replacing an unstarred carbon by nitrogen to give pyridine (II): (b) introducing a $+E$ substituent, say NO_{2} to give nitrobenzene (III): (c) introducing the basic $-E$ substituent, $-\mathrm{CH}_{2}^{-}$to give the benzyl anion (IV); and (d) introducing a typical heteroatomic $-E$ substituent, e.g., NH_{2} to give aniline (V).

1

II

II1

11

In (a) and (b), the charge density slould be lowered at all positions, but much more so in the positions ($o: p$) of opposite parity to the carbon atom replaced by N or substituted by NO_{2}. In (c), the formal negative charge is confined to the starred atoms in the odd AH benzyl system; while (d) differs from (c) in that a smaller general charge migration takes place from all positions in the ring to the substituent, leaving second-order positive charges in the meta positions. These conclusions clearly agree qualitatively with those of current theory. (See II-V; $\delta \delta \pm$ implies a second-order positive or negative charge.)

Another set of results concerns the ability of electromeric substituents to stabilize odd AH ions, such
as the benzyl ions (IV) and (VI). Here $+E$ substituents stabilize the anions (e.g., IV) more efficiently, and the cations (e.g., VI) less efficiently than do analogous $\pm E$ (hydrocarbon) substituents (such a pair being the $+E$ formyl group and the isoelectronic $\pm E$ vinyl group), the effect being much more marked if the substituent is attached to an active atom. $-E$ substituents (e.g., NH_{2}) show exactly the opposite effect. These conclusions also agree with resonance theory, it being possible to write unexcited ionic resonance structures (e.g., VII, VIII) only if the substituent is attached to an active carbon atom.

From this follows the rule for mutual conjugation of substituents, mutual conjugation being the condition in which the resonance energy of an even AH is increased more by attaching two substituents than one would anticipate from additivity of their individual effects. The previous correspondence with resonance theory ensures that here too both treatments should lead to similar conclusions. Thus mutual conjugation occurs only when the two substituents are of opposite types (one $+E$, one $-E$) and when they are attached to positions of opposite parity (e.g., o or p in benzene; $c f$. (I)).

This rule for mutual conjugation is necessary but
not sufficient. If the $-E$ substituent is S and the even AH R, then RS will be isoelectronic with an odd AH anion RS^{\prime}; if the NBMO does not cover all the active atoms in this, RS^{\prime} is cross-conjugated and attachment of a $+E$ group at inactive starred atoms in RS^{\prime}, or at equivalent atoms in RS, will not lead to mutual conjugation. This effect is seen well in 3 -nitro- 3^{\prime}-aminobiphenyl (IX); the NO_{2} and NH_{2} groups are attached to atoms of opposite parity in biphenyl, but the NO_{2} is attached to an atom inactive in the analogous m-biphenylmethyl anion (X) (the. NBMO coefficients are as indicated). The resonance theory leads to similar conclusions, the condition for mutual conjugation given here being equivalent to the condition that an unexcited structure $\mathrm{S}^{+}=\mathrm{R}=\mathrm{T}^{-}$can be written. It follows that both treatments lead to similar conclusions concerning the qualitative charge distributions in neutralized, or mutually conjugated, systems; and both to similar general definitions of $+E$ and $-E$ substituents.

The present treatment differs from resonance theory, however, in the possibility it offers of estimating all these effects semi-quantitatively within its limitations. ${ }^{1}$ The introduction of ionic structures in resonance theory rests almost entirely on qualitative reasoning and intuition, and their impor tance cannot be estimated in any given case except by appeal to experiment. Some such applications of the present treatment to the prediction of $+E$ and $-E$ activity of substituents are indicated above; others will appear in subsequent papers of this series when definite chemical problems are studied.
Notre Dame, Indiana

A Molecular Orbital Theory of Organic Chemistry. IV. ${ }^{1}$ Free Radicals

By M. J. S. Dewar ${ }^{2}$

Received September 13, 1951
The methods of the preceding papers ${ }^{1}$ are applied to the study of free radicals. Their reactivity and their stabilization by substituents are discussed.

Free radical chemistry has proved something of a stumbling block to existing qualitative theories, since the latter were designed mainly to analyze charge distributions in even systems. The extension to radicals has involved an unusually large proportion of $a d$ hoc explanations. Here the methods previously used ${ }^{1}$ will be applied to the study of radicals and the effect of substituents, etc., on their stability. The notation used is that of Parts (I)(III), ${ }^{1}$ and the discussion will be limited to alternant Kekulé radicals.

Theorem 58. The total π-electron energy of two odd $A H$ radicals is normally greater than that of the two even $A H$'s

[^1][^2]
[^0]: (1) For Part 1 see This Journal, 74, 3341 (1952).
 (2) For Part 11 see ibid., 74, 3345 (1952).
 (3) Relly Lecturer, March April, 1951. Present address: University of London, Queen Mary College, Mile End Road, Lundon, F.1, Fingland.
 (t) C. A. Coulson and H. C. Languet-Higgins, Proc. Roy. Soi. (Lovdon), A191, 39 (1947): A192, 16 (1947); A193, 447, 459, (1914). A195, 188 (1948).
 (5) H. C. Longnet-Higsins, J. Chem. I'hys, 28, 265, 275, 28: (1950),

[^1]: (1) For parts (I). (II) and (III) of this series see This Journal, 74, 3441. 3345, 3350 (1952).
 (2) Reilly Leeturer, March-April, 1951. Present address: Uaiverwity of London, Queen Mary College, Mile End Road, London E.1.. Eagland.

[^2]: obtained by transfer of one active atom (i.e., the even AH's are the more stable). This result follows at once from theorems 18 and 19 of Part (II). ${ }^{1}$ The rise in energy on separating the active carbon from one radical is $\langle\beta$, and the decrease in energy when that atom is added to the other radical is $>\beta$.

 Theorem 59. Combination of an odd $A H$ radical $R S, S$ being an atom, with another radical T to give $R-S-T$, is more exothermic if S is active. The atom S passes over to $s p$ hybridization in the reaction and is so removed from conjugation with R. If S is active in RS, then R is a normal even AH or a pair of such AH's; if S is inactive, R is either a nonKekule AH, or a pair of odd AH radicals. From theorem 29 of Part (II), ${ }^{1}$ a non-Kekule AH is less stable than a Kekule isomer; and from theorem 58, two odd AH radicals are less stable than an isomeric pair of even Kekule AH's. Hence the most exothermic modes of addition of T will be those where S is active.

 Theorem 60 . An odd alternant radical is stabilized by an increase in electron affinity of any atom in it. Let the odd radical be RS, derived from an even AH R and an atom S coulomb term α. Then the resonance energy $R_{R s}$ of $R S$ relative to $(R+S)$, is given ${ }^{1}$ by

